UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA

CARTA AL ESTUDIANTE

FS-0226 FISICA PARA LA ENSEÑANZA DE LA MATEMATICA

II Ciclo 2014

Créditos: 4

Requisitos: MA-0540

Horas de clase: 5 horas semanales

Horas consulta: a definir

Profesora: María Alejandra Castro Abarca **Correo electrónico:** alejandra2786@gmail.com

I. OBJETIVOS GENERALES:

Que el estudiante de enseñanza de la Matemática:

- 1. Logre integrar la Matemática en el contexto de la Física.
- 2. Reconozca la importancia de la Enseñanza de la Matemática en el quehacer científico.
- **3.** Tenga una visión más amplia de la necesidad de la investigación matemática para construir modelos relacionados con fenómenos físicos.
- 4. Conozca la evolución fllosófico-histórica de la Física.
- 5. Aplique su acervo cognoscitivo para resolver problemas concretos de la Física.

II OBJETIVOS ESPECIFICOS:

- 1. Conocer el origen de la Física y su evolución a través de la historia.
- 2. Relacionar el origen de la Física con la resolución de problemas concretos.
- **3.** Aprender a utilizar la Matemática como lenguaje para expresar leyes, teorías y modelos físicos.
- **4.** Conocer los conceptos de espacio, tiempo, materia, velocidad, aceleración, fuerza, momento, trabajo, energía y las relaciones clásicas entre estas cantidades.
- **5.** Conocer la importancia y necesidad de la introducción de la relatividad especial y la mecánica cuántica, así como sus implicaciones filosóficas.
- 6. Comprender la importancia de la introducción de elementos estadísticos a la Física.
- 7. Adquirir destrezas en el planteo y solución de problemas relacionados con la Física.

III. CONTENIDOS:

CAPITULO I: INTRODUCCION A LA FISICA (2 semanas)

- 1. El origen de la Física
- **2.** Algunos nombres importantes relacionados con la Física: Aristóteles, Arquímedes, Copérnico, Kepler, Galleo, Newton, Maxwell, Bohr, Planck, Einstein...

CAPITULO II: MECANICA CLASICA (5 semanas)

- 1. El concepto de espacio, tiempo, masa, velocidad, aceleración y fuerza.
- 2. Las observaciones de Kepler y sus leyes.
- 3. Las leyes de Newton.
- **4.** Trabajo y energía, Conservación de energía, momentum lineal e impulso. Colisiones. La importancia de las integrales de línea. Campos conservativos.
- 5. Movimientos oscilatorios. Resonancia.
- 6. Momento angular. Rotación de cuerpos rígidos. Equilibrio estático.
- 7. Gravitación universal.
- **8.** Campo eléctrico. Ley de Gauss. Potencial electrostático. Distribuciones de cargas discretas y continuas.

CAPITULO III: TEORIA ESPECIAL DE LA RELATIVIDAD (4 semanas)

- 1. La inexistencia del éter.
- 2. El experimento de Michelson-Morley.
- 3. La crisis de la mecánica clásica.
- 4. Transformaciones de Galileo.
- 5. Transformaciones de Lorentz.
- 6. Postulados de Einstein.
- **7.** La ecuación: $E = mc^2$
- 8. La paradoja de los gemelos. Paradoja del granero.

CAPITULO IV: ONDAS Y EL NACIMIENTO DE LA MECANICA CUANTICA (4 semanas)

- 1. Reflexión, refracción, interferencia y difracción de ondas.
- 2. Dualidad partícula onda.
- 3. Átomos.
- 4. El átomo de Bohr.
- 5. El nacimiento de la mecánica cuántica.
- **6.** La necesidad de una matemática más rigurosa.

CAPITULO V: ALGUNOS ASPECTOS DE LA ESTRUCTURA DEL UNIVERSO (1 semana)

- 1. La teoría del Big-Bang.
- 2. Neutrinos.

IV. CRONOGRAMA:

SEMANA	PERIODO	TEMAS
1	11/08 a 14/08	Introducción a la Física
2	18/08 a 22/08	
3	25/08 a 29/08	Mecánica clásica
4	01/09 a 05/09	
5	08/09 a 12/09	
8	15/09 a 19/09	
7	22/09 a 26/09	
8	29/09 a 03/10	I Examen Parcial (02-10-2014 7:00 a.m.)
9	06/10 a 10/10	Teoría Especial de la Relatividad
10	13/10 a 17/10	
11	20/10 a 24/10	
12	27/10 a 31/10	II Examen Parcial (30-10-2014 7:00 a.m.)
13	03/11 a 07/10	Ondas y el nacimiento de la Mecánica
14	10/11 a 14/11	Cuántica
15	17/11 a 21/11	
16	24/11 a 28/11	III Examen Parcial (20-11-2014 7:00 a.m.)
		Algunos tópicos de la Estructura del Universo
17	01/12 a 05/12	Exposiciones trabajo de investigación
18	08/12 a 12/12	Ampliación (11-12-2014 7:00 a.m.)

V. BIBLIOGRAFÍA RECOMENDADA:

Resnick R. Halliday, D. y Krane, K. *Física*. Quinta Edición. Editorial CECSA. Serway-Jewett, R. *Física para ciencias e ingeniería*. Tercera Edición. Mc-Graw Hill. Wilson, J. y otros. *Física*. Sexta Edición. Pearson-Prentice Hall.

VI. EVALUACIÓN:

3 exámenes parciales 60% (Cada uno 20%)

Tareas, Exámenes cortos, Exposiciones. 20%

Trabajo de investigación, escrito y oral. 20% (Acerca de fundamentos teóricos, alcances, experimentos y propósitos de algún centro de investigación en física aplicada a determinar posteriormente)

Todo estudiante en el curso queda sujeto a los reglamentos de evaluación de la Universidad de Costa Rica.

Δ