Universidad de Costa Rica – Facultad de Ciencias – Escuela de Física Física General I (FS-0210) – Programa – I Ciclo 2013

Créditos: 3 - Horas semanales: 4

15/Julio-19/Julio

19

Requisitos: Cálculo Diferencial e Integral I (MA-1001) - Correquisitos: Laboratorio de Física General I (FS-0211) Coordinador: Prof. Horacio Merlos Lacayo, oficina 109. Casillero 63, Correo electrónico: hmerlos4@gmail.com

CRONOGRAMA

SEMANA	PERIODO	TEMAS	SECCIONES
1	11/Marzo-15/Marzo	Cap. 1 Visón general , Vectores	1.6
		Cap. 2 Movimiento en línea recta	2.1, 2.2, 2.3, 2.4, 2.6 y 2.7
2	18/Marzo-22/Marzo	Cap. 2 Movimiento en línea recta	
		Cap. 3 Movimiento en dos y tres dimensiones	3.1, 3.2, 3.3, 3.4 y 3.6
3	25/Marzo-29/Marzo	SEMANA SANTA	
4	01/Abril-05/Abril	Cap. 3 Movimiento en dos y tres dimensiones Cap. 4 Fuerza	4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 y 4.8
5	08/Abril-12/Abril	Cap. 4 Fuerza	•
		Cap. 13 Fluidos (Principio de Arquímedes)	13.5
6	15/Abril-19/Abril	Cap. 5 Energía cinética, trabajo y potencia	5.2, 5.3, 5.4, 5.5, 5.6 y 5.7
7	22/Abril-26/Abril	Cap. 5 Energía cinética, trabajo y potencia. SEMANA UNIVERSITARIA	
8	29/Abril-03/Mayo	Cap. 6 Energía potencial y conservación de la energía	6.1, 6.2, 6.3, 6.4, 6.5, 6.6 y 6.7
			PRIMER EXAMEN COLEGIADO (CAP. 1 2, 3, 4 Y
9	06/Mayo-10/Mayo	Cap. 7 Momento y colisiones	5) 11 DE MAYO DE 1 pm a 4 pm
			7.1, 7.2, 7.3, 7.4, 7.5, 7.6, y 7.7
10	13/Mayo-17/Mayo	Cap. 7 Momento y colisiones	
11	20/Mayo-24/Mayo	Cap. 8 Sistemas de partículas y objetos extensos	REPOSICION PRIMER EXAMEN COLEGIADO Y EXAMEN DE SUFICIENCIA, 22 DE MAYO DE 5 pm a 8 pm 8.1, 8.2 y 8.4
12	27/Mayo-31/Mayo	Cap. 9 Movimiento circular	9.1, 9.2, 9.3, 9.4, 9.5, 9.6 y 9.7
13	03/Junio-07/Junio	Cap. 10 Rotación	10.1, 10.2, 10.3, 10.4, 10.5, 10.6 y 10.7
14	10/Junio-14/Junio	Cap. 10 Rotación	
15	17/Junio-21/Junio	Cap. 11 Equilibrio estático Cap. 12 Gravitación	SEGUNDO EXAMEN COLEGIADO (CAP. 6, 7, 8, 9 y 10) 22 DE JUNIO DE 8 am a 11 am 11.1, 11.2 y 11.3 12.1, 12.2, 12.3, 12.4, 12.5 y 12.6
16	24/Junio-28/Junio	Cap. 12 Gravitación	·
17	01/Julio-05/Julio	Cap. 13 Fluídos	REPOSICION SEGUNDO EXAMEN COLEGIADO, 03 DE JULIO DE 2 pm a 5 pm EXAMEN PARCIAL (EN HORARIO DE CLASE, SEMANA 17), CAP. 11, 12 Y 13 13.1, 13.2, 13.3, 13.4, 13.5 y 13.6
18	08/Julio-12/Julio		ENTREGA DE NOTAS A MAS TARDAR 11 DE

JULIO.

AMPLIACION, 18 DE JULIO DE 8 am a 11 am

EVALUACIONES	FECHA Y HORA
Primer examen colegiado (Bauer, Westfall Cap. 1, 2, 3, 4 y 5)	11 DE MAYO DE 1 pm a 4 pm
Reposición del primer examen colegiado Prueba por suficiencia: se evalúa todo el material.	22 DE MAYO DE 5 pm a 8 pm
Segundo examen colegiado (Bauer, Westfall Cap. 6, 7, 8, 9 y 10)	22 DE JUNIO DE 8 am a 11 am
Reposición del segundo examen colegiado	03 DE JULIO DE 2 pm a 5 pm
Examen parcial (Bauer, Westfall Cap. 11, 12 y 13)	Definido por el profesor, en horario de cada grupo en la semana del 01/Julio-05/Julio
Reposición examen parcial	Definido por el profesor
Entrega de notas a mas tardar	11 DE JULIO
Examen de ampliación	18 DE JULIO DE 8 am a 11 am

BIBLIOGRAFIA

- 1. Bauer, W. y Westfall, G. D. Física para Ingeniería y Ciencias. Tomo I. McGraw Hill.
- 2. Merlos, H; Loría, G. y Magaña, R. Problemas para Física General 1. Escuela de Física, U.C.R., sexta edición, 2012. Manual de Apoyo
- 3. Serway, R. A. y Jewett, J. W. Física para Ciencias e Ingeniería Volumen 1. Cengage Learning, México, Séptima edición, 2008. (Consultar para el capítulo 10, Rotación, del cronograma)
- 4. Sitios de interés:

http://www.sc.ehu.es/sbweb/física/

http://ocw.mit.edu/courses/physics/8-01-physics-i-classical-mechanics-fall-1999/

http://moodle.fisica.ucr.ac.cr.

METODOLOGIA Y EVALUACION

Clases magistrales en las que se desarrollan la teoría y conceptos afines, y se resuelven ejemplos y problemas representativos. En la última semana cada profesor realizará un examen parcial con un valor del 20% de la Nota. Se harán dos exámenes Colegiados en las fechas indicadas en el cronograma. Cada uno de ellos con un valor del 40% de la Nota. En la prueba colegiada y parcial no se dará formulario. Una semana antes de los exámenes colegiados se indicará las aulas asignadas a cada grupo y estará dicha información también disponible en el servidor de

cursos (Moodle de física, en la página del coordinador de cátedra de fs0210). Los estudiantes que no se ajusten a esta distribución de aulas para los exámenes colegiados, no pueden solicitar tiempo adicional.

METODICA PARA SOLICITAR REPOSICION DE LOS EXAMENES COLEGIADOS:

Para poder solicitar la reposición de algún examen colegiado, el estudiante deberá entregar al profesor del curso la solicitud junto con la justificación debidamente documentada, en un plazo máximo de cinco días hábiles después de la aplicación de la prueba ordinaria. Una vez que el profesor del curso valore la justificación, *ver artículos 3 y* **24 del reglamento de régimen académico estudiantil: http://www.cu.ucr.ac.cr/normativ/regimen_academico_estudiantil.pdf** le debe poner su firma y visto bueno y luego debe ser entregada al coordinador en la oficina 109 o dejarla en el casillero 63, para el correspondiente control.

JUSTIFICACION Y OBJETIVO GENERAL

La secuencia de Físicas Generales está compuesta por 3 cursos, y dirigida a estudiantes de Ciencias Básicas e Ingeniería, acompañada además por una secuencia paralela de cursos de cálculo diferencial e integral, y ecuaciones diferenciales. Como objetivo general se tiene el enseñar al estudiante las leyes fundamentales en que se sustentan las diferentes teorías físicas, sus correspondientes campos de acción. Además se pretende mejorar, y en muchos casos crear, en el estudiante la capacidad de abstracción para llevar a cabo un razonamiento ordenado y lógico, desarrollar la iniciativa de investigar y propiciar la comprensión del método científico para que pueda aplicarlo en su carrera y después en su quehacer como profesional. El curso de Física General 1 ha sido diseñado para estudiantes que paralelamente se inician en el cálculo, y hace énfasis más en la comprensión de los conceptos que en el formalismo matemático de la teoría. El nivel de este curso está expresamente escogido para estudiantes que continuarán estudios en Física, Química e Ingenierías, donde la aplicación del cálculo a los diversos problemas es constantemente requerida. El curso de Física General 1 estudia las leyes generales y conceptos fundamentales que se utilizan en Física para analizar distintos problemas de la Mecánica Clásica.

OBJETIVO ESPECIFICOS POR TEMAS

- 1. Cinemática y dinámica de una partícula
 - a) Comprender, definir claramente e identificar en problemas específicos los siguientes parámetros físicos: posición, velocidad y aceleración media e instantáneas, velocidad y aceleración angular, momentum lineal y angular, fuerza, trabajo, potencia, energías cinética y potencial.
 - b) Calcular todos los parámetros anteriores en los diferentes problemas de aplicación, utilizando las técnicas del álgebra vectorial y el cálculo. Dominar el Sistema Internacional de Unidades.
 - c) Identificar en cada caso el tipo de movimiento que describirá la partícula (rectilíneo uniforme, rectilíneo acelerado, de proyectil, circular, curvilíneo general), el sistema de coordenadas más adecuado (rectangulares o polares), así como los parámetros que tienen importancia en el problema.
 - d) Utilizar las leyes de Newton para plantear y resolver la ecuación de movimiento que determina el movimiento de la partícula, en casos donde el nivel matemático exigido así lo permita.
 - e) Identificar en un problema dado si actúan fuerzas conservativas o no y calcular el trabajo mecánico, ya sea mediante la integración directa de la fuerza o relacionándolo con el cambio en la energía potencial.

2. Sistemas de partículas

- a) Comprender y definir claramente el concepto de centro de masa, y la relación entre la dinámica de un sistema de partículas y la de una sola partícula a través de este concepto.
- b) Comprender, definir e identificar en casos específicos los siguientes parámetros definidos para un sistema de partículas: posición, velocidad y aceleración del centro de masa, cantidades de movimiento lineal y angular, y momento de fuerza actuando sobre el sistema.
- c) Resolver problemas de dos cuerpos haciendo uso del concepto de masa reducida.
- d) Distinguir entre fuerzas externas e internas del sistema, y los efectos que producen unas y otras.
- e) Utilizar el sistema de coordenadas del centro de masa y el del laboratorio, y sus transformaciones, en la resolución de problemas.
- f) Resolver problemas de colisiones en una y dos dimensiones.
- g) Definir en forma clara y completa los conceptos de campo y potencial gravitacional, y calcular campos gravitacionales para distribuciones sencillas de masa.
- h) Usar la ley de Gravitación Universal conjuntamente con las leyes generales de Newton y los principios de conservación, para problemas de partículas moviéndose bajo un potencial gravitacional.

3. Cuerpos rígidos

- a) Comprender y definir claramente el concepto de inercia de rotación.
- b) Calcular inercias de rotación para sistemas de partículas y distribuciones continuas de masa cuya geometría permita realizar integraciones sencillas.
- c) Resolver problemas de sólidos en movimiento de rotación, traslación y movimientos combinados, partiendo de la ecuación de movimiento o por consideraciones de energía.
- d) Describir en forma cualitativa el movimiento del giroscopio.

3. Fluidos

- a) Comprender y definir claramente los conceptos de densidad de masa y presión.
- b) Llevar a cabo aplicaciones de la ecuación que establece la variación de presión con la profundidad, a través de un líquido (principio de Pascal, el manómetro, el barómetro).
- c) Comprender la aplicación del principio de Arquímedes.
- d) Interpretar la ecuación de continuidad en términos de conservación de masa e incompresibilidad del fluido.
- e) Comprender la obtención del principio de Bernoulli a partir de consideraciones de trabajo y energía, y llevar a cabo aplicaciones específicas de este principio.